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Abstract

This degree project describes a method to increase the performance
of a web server by splitting it in two parts, one part executes in ker-
nel mode and process requests for static web pages and picture files
while requests for dynamic web pages that is generated by executing
scripts or contains information from an database is handed over to a
web server that executes in user mode. The web server that executes
in kernel mode can be optimized for its purpose and minimizes process
scheduling and copying of data which means that a larger number of
requests per second can be processed. The web server that executes in
user mode can be an unmodified standard web server. In the project
a prototype is implemented for the Windows family of operating sys-
tems, specific problems that is solved includes network communication
from kernel mode and how to hand over a request to user mode. The
prototype implementation is used to measure performance and evalu-
ate how well the method works. The project is also related to earlier
work in Linux.

Sammanfattning

Det här examensarbetet beskriver en metod att höja prestanda för
en webbserver genom att dela upp den i tv̊a delar, den ena delen exe-
kverar i system-mode och behandlar anrop till statiska webbsidor och
bildfiler medan anrop till dynamiska webbsidor, dvs s̊adana som ge-
nereras genom exekvering av skript eller inneh̊aller information som
hämtas fr̊an en databas, skickas vidare till en webbserver som exekverar
i användar-mode. Den webbserver som exekverar i system-mode kan
optimeras för sin tillämpning och innebär att man minimerar process-
schedulering och kopiering av data varför ett större antal anrop per se-
kund kan behandlas. Den webbserver som exekverar i användar-mode
kan vara en omodifierad webbserver av standardtyp. I examensarbe-
tet utvecklas en prototyp för Windows-familjen av operativsystem,
speciella problem som löses är nätverkskommunikation fr̊an system-
mode och hur överlämning av anrop till användar-mode kan utföras.
Prototyp-implementationen används för att göra prestanda mätningar
och utvärdera hur väl metoden fungerar. Arbetet relateras ocks̊a till
tidigare arbeten i Linux.
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1 Introduction

This section contains information about the report that is not directly re-
lated to the topic itself. Some background to the degree project is given.
Information on the author and supervisors is presented. Also some details
on the hardware and software used during the project are given. Finally the
acknowledgments are presented.

1.1 About this report

This is a report on a degree project at the department for Applied Physics
and Electronics[1] at Ume̊a University. Some of the areas the department
focus on is data communication and embedded systems, they have given
courses on development of device drivers for both Windows and Linux in
their four year education to a Degree of Master of Science with a major in
Applied Electronics.

The intention of the degree project is to further develop the student’s ability
to gain deeper knowledge in a subject and apply it to a bigger project. It
also gives insights in research and development work and is an exercise in
documenting and presenting a project.

As a degree project I have chosen to investigate a method to improve the
performance of a web server and develop a prototype for Windows using this
method. The project is called “High performance kernel mode web server
for Windows”. First this report gives some background on the method and
earlier work in Linux, this is followed by a description of the Windows net-
working architecture. Then the prototype implementation is described. This
prototype is used to evaluate how the method works in the Windows en-
vironment and performance measurements is done. Finally the results are
analyzed and conclusions are drawn.

The selection of this degree project is based on personal interest and work
experience from device drivers in Windows, particular network communica-
tion from kernel mode and file system drivers.

1.2 About the author

The author of this report Bo Brantén is studying to a Degree of Master of
Science with a major in Applied Electronics at the department for Applied
Physics and Electronics at Ume̊a University. In addition to the studies he has
worked with Windows device drivers both as a teaching assistant and in the
industry, he is also internationally recognized in the open source community
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for providing information on Windows file system drivers. Table 1 contains
information on how to contact him.

Name Bo Brantén
E-mail bosse@acc.umu.se

Table 1: Author contact information

1.3 Supervisors

The supervisor for this degree project is Ulf Brydsten, Fil lic and the ex-
aminator is Dan Weinehall, MSc. Both are working at the department for
Applied Physics and Electronics at Ume̊a University. Their contact informa-
tion is provided in table 2 and the address to the department is provided
in table 3 .

Name Ulf Brydsten Dan Weinehall
E-mail ulf.brydsten@tfe.umu.se dan.weinehall@tfe.umu.se

Table 2: Supervisor contact information

Name Department for Applied Physics and Electronics
Ume̊a University

Address 901 87 Ume̊a
Sweden

Phone +46-(0)90-786 50 00
Fax +46-(0)90-786 64 69

Table 3: Department contact information

1.4 Typographical conventions

In the report the following typographical conventions is used.

Roman regular — Used for normal text.

Roman bold — Used for description and table headings.

Constant width — Used for source code, email addresses and URLs.
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1.5 Hardware and software used

The prototype was implemented on a standard personal computer running
Windows. Table 4 lists the software used.

Windows r© 2000 Professional with Service Pack 4
Visual Studio r© 6.0 with Service Pack 5
Windows r© 2000 Driver Development Kit (DDK)
Debugging Tools for Windows r© 6.4.7.2
SoftICETM 2.5
A collection of tools from OSR[2] and Sysinternals[3].

Table 4: Software used

For the evaluation of the prototype a test network was built, the equipment
used is described in section 5 on page 32.

The report was typeset by the author in LATEX.

1.6 Acknowledgments

I would like to thank the Department for Applied Physics and Electronics
for creating a friendly environment for studies. Ulf Brydsten has been of
great support both during the degree project and in the earlier studies. Also
I want to thank Anders Myrberg and the others at GTC Security AB[4] for
given me the opportunity to learn more about the internals of Windows file
system drivers and network communication from kernel mode.

Ume̊a 1st June 2005 Bo Brantén
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2 Background

This section gives some background to the project, it describes earlier work
in Linux and some methods to improve the network API.

2.1 The Mindcraft benchmark

In April 1999 a company called Mindcraft published a benchmark[5] com-
paring Windows NT Server 4.0 and IIS with Red Hat Linux and Apache.
The conclusion of the benchmark was:

Microsoft Windows NT Server 4.0 is 2.5 times faster than Linux
as a File Server and 3.7 times faster as a Web Server.

Mindcraft is a company which specializes in benchmarking systems for pay-
ing customers, in this case the customer was Microsoft.

This benchmark became heavily debated, it was criticized by the Linux
community for using an improper configuration of Linux and Apache for a
big server under high load and exploiting weaknesses in them with the paying
customer in mind. Even though Mindcraft has admitted that the benchmark
had problems and has since published new results it showed that there was
a need to implement new system calls and new communication architectures
in the Linux kernel to support high performance web servers, it became the
starting point of a number of activities to respond to that.

2.2 Improvements to the network API

This section describes a number of improvements to the network API that
is related to the performance of web servers.

2.2.1 sendfile()

The traditional way for an application to send a file is to read parts of it
into a buffer and then write the buffer contents to a socket, this means that
the data will be copied several times to and from the user address space
and that several context switches is needed. To optimize this a new system
call sendfile() was developed. It takes two file descriptors as parameters,
one referring to a file to read data from and one referring to a socket that
the data is written to, since this is done in the kernel with one system
call the amount of data copying and context switches will be reduced. The
sendfile() system call was developed to improve the performance of user
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mode web servers but it can also be used in kernel mode. Following is the
function prototype for sendfile() with a description of its parameters and
return value.

ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

out fd File descriptor opened for writing.

in fd File descriptor opened for reading.

offset Pointer to a variable holding the input file pointer position from
which sendfile() will start reading data. When sendfile() returns,
this variable will be set to the offset of the byte following the last byte
that was read.

count The number of bytes to copy between the file descriptors.

The return value is the number of bytes copied.

The sendfile() system call copies data from the file system cache to the
socket buffer in kernel mode but even this copy can be eliminated by using
something called “zero-copy networking” witch means that the TCP/IP-
stack can read the data directly from the file system cache, it is described
in one of the following sections.

On Windows there is a corresponding system call TransmitFile() available
for user mode applications.

2.2.2 TCP CORK

A new socket option called TCP CORK was introduced together with the
sendfile() system call. If this option is set on a socket the TCP/IP-
stack will not send a small packet over the network as soon as something
has been written to the socket but instead wait for more data, the send
will take place either when enough data has been written to the socket or
when the TCP CORK socket option is cleared again. This is especially useful
together with sendfile() since it is common to send a header before the
file. Using the TCP CORK socket option the header will be sent together with
the file data witch decreases the number of packets.

Also without using TCP CORK the example above would suffer from the effect
of “Nagle’s algorithm” that was invented to avoid that a packet is sent over
the network for every keystroke in a terminal application. If the application
writes characters one by one to the TCP/IP-stack Nagle’s algorithm will
send the first character right away but the next one is buffered awaiting
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acknowledge for the first packet, during this wait more characters could
be entered by the user and sent together as one packet or a packet could
arrive from the server, the buffered data can then be sent together with
the acknowledge for that packet. This algorithm will decrease the network
bandwidth used by a terminal application but for a web server that typically
sends a header followed by a file it would split the header and file data in
two packets and introduce a delay for the second packet.

Using the TCP CORK socket option is an important optimization for both user
mode and kernel mode web servers.

On Windows there is no socket option that directly corresponds to TCP CORK
however this is not a problem since the user mode function TransmitFile()
has parameters for an optional header and trailer to the file and the kernel
mode TDI interface is using chained MDLs, therefore it is possible to put
together the data that should be sent as one packet before handing it over
to the TCP/IP-stack.

2.2.3 Zero-copy networking

As was described in an earlier section the sendfile() system call copies
data from the file system cache to the socket buffer. New hardware features
makes it possible to eliminate even this final coping of data by implementing
something called “zero-copy networking”. To utilize zero-copy networking
the network card must support two features in hardware:

• Scatter/gather I/O.

• Calculation of TCP and IP checksums.

When sendfile() is used on a system with this kind of network card is
it possible for the TCP/IP-stack to read data directly from the file sys-
tem cache, calculate the checksum in hardware and send the packet on the
network without any extra copying being done.

An application or kernel mode code doesn’t have to do anything special to
utilize zero-copy networking, it is implemented by the TCP/IP-stack and
the driver for the network card.

On Windows the requirements to utilize zero-copy networking is the same, it
will be available if the network card and driver supports it. The kernel mode
TDI interface is using chained MDLs and the file system interface supports
requesting such chained MDLs representing data in the file system cache.
In user mode is the function TransmitFile() available, it uses the just
described features in its implementation.
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2.2.4 Delayed accept

A basic design of a web server is to call accept() on the main socket in a
loop, when a new connection is established does accept() return a socket
representing it and the application creates a new thread or process to han-
dle the request where after the loop calls accept() again waiting for more
connections. The new thread or process will begin by calling recv() that
blocks waiting for data to arrive on the socket.

This process can be optimized by implementing something called “delayed
accept”. When a client connects to the server is the connection implicitly
accepted by the TCP/IP-stack but the application isn’t notified yet, in-
stead the TCP/IP-stack waits until some amount of data has arrived. The
application will then be given both a socket representing the new connection
and a buffer containing the first data, for example a HTTP-request, with
the same system call. This will decrease the amount of scheduling needed.
On Linux can delayed accept be requested by setting the socket option
TCP DEFER ACCEPT, Windows has instead implemented a special function
AcceptEx() that both do accept and returns the first data received while
FreeBSD even lets the user install an accept filter that can specify what data
to receive before accepting an connection.

2.2.5 Send and disconnect

After the web server has sent all the data of a file it notifies the client of
this by doing disconnect, the standard way to do this is calling shutdown()
with the how parameter set to SD SEND followed by close() on the socket.
However it is possible that the TCP/IP-stack would transfer the disconnect
information in its own network packet, therefore it would be an advantage if
one could flag the data sent as the “last data to go” and have the TCP/IP-
stack send the disconnect information together with it. Neither on Windows
nor on Linux does the TCP/IP-stack has an interface to do send and discon-
nect as one integrated operation, however the function TransmitFile() on
Windows takes a flag TF DISCONNECT that will disconnect the socket after
sending the file.

Something to think of when using the TDI interface on Windows is to not
wait for the last (and for small files possible only) send to complete before
doing disconnect because that means waiting for an acknowledge to arrive
from the remote node on the data packet, this unnecessarily delays the
disconnect.

This may not sound like the most important optimization but in fact it
helps getting good results in certain benchmarks namely the number of
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requests per second for small files using a serialized client. In this case the
largest amount of time is taken by connecting and disconnecting the TCP
protocol, after receiving the file data the client waits for more data to arrive
or disconnect to happen before it sends a new request, a fast disconnect will
improve the benchmark result in this situation.

2.3 Previous work

By tradition software is divided into what is executed in user mode respective
what is executed in kernel mode and as much as possible is placed in user
mode while kernel mode is only chosen when direct access to hardware is
needed or performance motivates it, for example by device drivers.

The idea that the Linux developers got was to increase the performance of
a web server by splitting it in two parts, one part executes in kernel mode
and process requests for static web pages and picture files while requests
for dynamic web pages that is generated by executing scripts or contains
information from an database is handed over to a web server that executes
in user mode. The advantages of executing a web server in kernel mode is
that it decreases process scheduling, context switching and copying of data,
also it makes it possible to integrate the web server with the TCP/IP-stack
and not be limited to the standard socket interface. This makes it possible to
process a larger number of requests per second and get higher throughput.
The web server that executes in user mode can be an unmodified standard
web server.

In the Linux community two projects has been created based on this method,
kHTTPd by Arjan van de Ven and TUX by Ingo Molnar, they are described
in the following sections.

2.3.1 kHTTPd

kHTTPd[6] was the first kernel mode web server project for Linux, it was
started in 1999 by Arjan van de Ven as a response to the MindCraft bench-
mark. kHTTPd was developed on the 2.2 series of the Linux kernel and was
integrated in the main kernel distribution from version 2.3.14.

To begin with the kHTTPd server used a simple architecture, it started a
new thread for every request and the communication that should be handed
over to the user mode web server was copied from socket to socket. However
kHTTPd was soon developed to use an architecture that allows for higher
performance, it is shortly described in the following paragraph.

When the kHTTPd kernel module is loaded it creates one thread for each
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CPU on the system. The processing of requests is divided in a number of
states with a corresponding queue to each state. The requests is transferred
from one queue to the next when the state changes. The states are:

• Wait for accept.

• Wait for HTTP-header.

• Send data or hand over to user mode web server.

• Cleanup.

The first state “wait for accept” is queued by the operating system while the
other queues is handled by kHTTPd. After parsing the HTTP-header the
request is either put in the send data queue or handed over to the user mode
web server, kHTTPd selects between them depending on the URL and the
filename extension. If the request is to be handed over to the user mode web
server kHTTPd directly enters it in the accept queue for that socket, this
can be done since a kernel module in Linux has access to data structures and
functions internal to the kernel and the source code is available. The normal
setup is that kHTTPd is listening on port 80 while the user mode web server
is listening on some other port for example 8080. In the cleanup queue the
socket is closed and information about the request is logged. The requests
waiting in the queues is regularly checked using non-blocking system calls
to see if any input or output can be done.

The measurements published on the kHTTPd project homepage claims that
it was four to five times faster than Apache on the same system at that time.
Later measurements[9] has showed that kHTTPd is faster or at least as fast
as the best user mode web servers but that it is outperformed by newer
kernel mode web servers using better architectures.

In the 2.5 series of development kernels kHTTPd was again removed from the
main kernel distribution for a number of reasons among them the debate if a
web server belongs in the kernel and the availability of TUX, a new project
described in the next section. Also kHTTPd had been un-maintained for a
while. Therefore it was decided that this kind of project is best maintained
separately outside the main kernel distribution.

2.3.2 TUX

TUX[7][8] stands for “Threaded linUX http layer” and is designed and im-
plemented by Ingo Molnar at Red Hat. Like kHTTPd it is also a kernel
mode web server but it differs in design and features. TUX is available for
both the 2.4 and the 2.6 series of the Linux kernel and it is ported to several
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of the CPU architectures that Linux supports. In marketing the name “Red
Hat Content Accelerator” is used in addition to TUX.

Architecture: TUX takes a different approach than kHTTPd to respond
to network events, instead of using the normal socket interface from kernel
mode and using non-blocking calls to examine the connections for activity
TUX hooks in to the TCP/IP-stack by changing function pointers in the
internal structure representing an socket to point to functions provided by
TUX so that when a network event occur will TUX be called directly and
can respond to it. The two most important functions that TUX hooks in
to is data ready that is called when data is received on the socket and
write space that is called when the TCP/IP-stack is ready to send more
data. The functions state change and error report is also hooked by
TUX. If the hardware supports it is zero-copy networking used by TUX
to send data direct from the file system cache.

In addition to the different architecture to get higher performance TUX also
differs from kHTTPd in that it has several advanced features. For example it
supports caching of data from the user mode web server, it has an interface
to be extended with modules, both in kernel mode and user mode, a module
could interpret CGI scripts or serve a specific MIME type. Also it has full
support for logging, support for virtual hosting, and can act as an FTP
server.

Performance: An performance analyzes done by a research group at
IBM[9] showed that the SPECWeb96 result for TUX was approximately
twice that of kHTTPd witch in turn received twice the result of Apache.
Looking at connection rate and throughput separately shows some interest-
ing differences. Measuring connection rate TUX was only 10 to 20 percent
faster than kHTTPd while both were approximately four times faster than
Apache for small files, for big files there was less difference in connection
rate. Instead measuring throughput for big files TUX performed three times
better than kHHTPd that performed approximately equally to Apache. For
small files there was less difference in throughput. The line between small
and big files lies somewhere in the range of 32kB to 64kB. This shows that
it is important to specify what to measure when comparing web server per-
formance.

3 The Windows Networking Architecture

The Windows Networking Architecture is made of a number of layers with
well defined interfaces between them. This makes it possible for modules
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from different vendors to work together and lets the user install new mod-
ules that provide added functionality. The following figure shows the most
important parts and how they are related.

Library
NDIS

Application

WS2_32.DLL

MSAFD.DLL

Windows Sockets
Service Provider

WSHTCPIP.DLL

Windows Sockets Helper
for TCP/IP

Windows Sockets Helper
for other protocol

Transport provider for
other protocol

TCPIP.SYS

NDIS.LIB

HAL.DLL

HAL

NDIS Intermediate driver

NDIS Miniport driver

AFD.SYS

for Windows Sockets

Application

Windows Sockets 1.1

Windows Sockets 2.0

WSOCK32.DLL

Ancillary Function Driver

Transport provider for TCP/IPIPX/SPX Apple TalkNetBEUI

RDR SRV NPFS

TDI

NDIS

TDI clients
Transport providers

User mode

Kernel mode

The Windows Networking Architecture

Starting from bottom is the hardware with one or more “Network Interface
Cards” (NICs). The software closest to the hardware on the Windows NT
family of operating systems is the “Hardware Abstraction Layer” (HAL), it
contains for example functions to access I/O-ports and handle interrupts.
The purpose of HAL is to isolate the rest of the operating system from
differences in the hardware among different computers within the same CPU
architecture. The next layer above HAL is NDIS.

3.1 NDIS

The “Network Driver Interface Specification” (NDIS) was created to sepa-
rate drivers for “Network Interface Cards” (NICs) from protocol implemen-
tations. The driver for a NIC is called an “NDIS miniport driver”. The NDIS
miniport driver implements the part that is specific to a NIC and uses the
NDIS support library for the processing that is common to all NIC drivers.

The NDIS support library envelopes an NDIS miniport driver both above
and below, it contains functions to access the hardware, on the Windows
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NT family of operating systems will the NDIS support library use HAL to
access the hardware. The interface to the transport providers above NDIS
also goes through the NDIS support library, it is designed as a call back
interface where the NDIS miniport driver registers functions that the NDIS
support library will call when different events occur.

An NDIS miniport driver implements the interface specified by NDIS and
is restricted to call a limited number of functions provided by the NDIS
support library, this makes NDIS miniport drivers binary compatible among
operating systems that implement the NDIS support library. For example
Microsoft supports the use of the same NDIS miniport driver binary on
Windows 9x and the Windows NT families of operating systems. It has
even been created modules[10][11] for Linux that allows loading an NDIS
miniport driver compiled for Windows in the Linux kernel and use it as a
network driver for Linux.

There is also something called “NDIS intermediate drivers” that can be put
above NDIS miniport drivers but below the transport providers, they filter
the network traffic at a low level and can be used for example to implement a
firewall, however it is also possible to install filter drivers above the transport
provider, so called TDI filter drivers, to filter the network traffic at that level.

3.2 Transport providers

The implementation of a network protocol is called a “transport provider”,
the transport providers implement an interface called “Transport Driver
Interface” (TDI) and uses the NDIS interface below them to talk to the
network hardware. A transport provider can dynamically be connected to
different network cards or other communication channels like IrDA or a SAN,
this is called “binding” and is done by the system administrator. Example of
transport providers included with Windows is TCP/IP, NetBEUI, IPX/SPX
and AppleTalk.

3.3 TDI clients

The kernel mode interface to network protocols is TDI and the applications
that uses it is called “TDI clients”. TDI is the only network interface that is
available to kernel mode code since Windows Sockets is only implemented for
user mode. TDI is an asynchronous event driven interface that is very general
so that it can be used for a wide variety of network types and protocols.
Since the TDI interface is so general it has become abstract and is considered
difficult to work with. One of the most important TDI clients is the Windows
Sockets implementation that is described in more detail in the next section.
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Examples of other TDI clients are RDR and SRV the client respective the
server for the Windows network file system using the SMB protocol.

3.4 Windows Sockets

The most widely used network interface is called “BSD sockets” since it was
first implemented on BSD UNIX. The BSD sockets interface contains func-
tions like socket(), connect(), send() and recv(). Microsoft has defined
a network interface for Windows that is compatible with BSD sockets, it
is called “Windows Sockets”. On older versions of Windows was Windows
Sockets 1.1 used, it is a close implementation of BSD sockets with some
extensions. Windows Sockets 2 is however a more general interface that can
be extended to support other network protocols in addition to TCP/IP.

To provide a new protocol one implement something called a “Windows
Sockets Helper” (WSH) DLL. When the WSH DLL has been registered
in the system can applications request the new protocol when they create
a socket handle and then use the ordinary Windows Sockets function to
communicate using this handle. Windows Sockets will provide the common
functionality and call functions in the WSH DLL for tasks that is specific
to the new protocol. It is common that the new protocol also has its own
transport provider in kernel mode and that the WSH DLL communicates
with this. For example the TCP/IP transport provider is TCPIP.SYS and
its WSH DLL is WSHTCPIP.DLL.

The kernel mode part of the Windows sockets implementation AFD.SYS
is also a file system driver, the reason for this is that it makes it possible
to let file objects and normal file handles represent sockets. Suppose that
an application creates a socket and makes a connection using the functions
socket() and connect(). Now if the application instead of using send()
and recv() to transmit and receive data decides to use normal file I/O
functions like read() and write() or hand over the handle to an application
that don’t know that the handle represents a socket. When the application
calls read() or write() will the I/O manager know what file system driver
the file object belongs to and call the read or write function that the file
system driver has exported, since the file system driver for this file object
is the driver implementing sockets can it let its read and write functions
translate to recv and send, the socket handle can thus be used exactly as a
normal file handle.

More information on the Windows networking architecture can be found in
the MSDN Library[12] and the Windows DDK[13].
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4 Implementation
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Implementation

First this section describes the methods that where used to implement a
prototype for Windows, following that are the components of the prototype
described in more detail.

4.1 Methods

This section describes the methods that where used to implement a proto-
type for Windows.

4.1.1 Avoiding splitting sends

When a web server answers a HTTP GET request it first sends a header to
the client followed by the file data. If one simply calls the TCP/IP-stack to
send the header followed by one or more calls to send the file data it is likely
that the header will be sent in its own network packet before the next data
is given to the TCP/IP-stack. For small files this will double the number of
network packets. An important optimization for web servers is therefore to
send the header and the first file data in one packet.

On Linux this is accomplished with the TCP CORK socket option, and in user
mode on Windows can the TransmitFile() function be used, it takes both
a file handle and a header and trailer to send together with the file data.
However in kernel mode on Windows is non of these possibilities available,
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instead is the TDI interface used. The TDI interface is not using normal
pointers to memory areas to describe buffers but is instead using something
called “Memory Descriptor Lists” (MDLs). An MDL is an internal struc-
ture used by Windows to describe the physical pages that back a virtual
memory range. After allocating MDLs that represent the buffers containing
the header and file data they can be linked together using the Next field, an
example from the source code is showed here:

headerMdl->Next = fileMdl;

This is called an “MDL-chain”. When the TCP/IP-stack is given the MDL-
chain it can program the network card to do DMA directly from the different
buffers that the MDL-chain describes.

4.1.2 Zero-copy networking

Eliminating the copy of data from the file system cache to the TCP/IP-stack
when sending is called zero-copy networking. To truly get zero-copy network-
ing the network card and its driver must support scatter/gather DMA and
calculation of TCP and IP checksums in hardware. The TDI interface is
using MDLs to describe the buffers to read data from and therefore must
one get an MDL that represents the data in the file system cache. Simply
creating a buffer and allocating an MDL for it would mean a copy opera-
tion, however the file system interface as defined by Windows includes the
possibility to request an MDL that directly represents the physical pages in
the file system cache.

This is done by setting the minor function code in the I/O-stack location
to IRP MN MDL and the major function code to IRP MJ READ. When the
read IRP completes is an MDL returned in Irp->MdlAddress. After use
is this MDL returned to the file system driver using the minor function code
IRP MN COMPLETE MDL. The file system driver typically implements support
for IRP MN MDL and IRP MN COMPLETE MDL with help of the cache manager
functions CcMdlRead() and CcMdlReadComplete(). The fast-I/O interface
has the corresponding functions MdlRead() and MdlReadComplete().

Note that when not setting the minor function code to IRP MN MDL it is pos-
sible to specify a pre-allocated MDL in Irp->MdlAddress that represents
a buffer that the data will be read into, this is the “normal” way to do I/O
using MDLs, however when specifying IRP MN MDL the Irp->MdlAddress is
not initiated before calling the file system but will instead on complete of
the call be set to an MDL allocated by the file system driver and directly
representing the data in the file system cache.

As a curiosity it could be mentioned that there is minor function codes and
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fast-I/O functions to read compressed files in raw format, that is without
decompressing them, the HTTP protocol allows a web browser to notify
the web server that it supports different compression algorithms, if a web
browser where to support the compression algorithm used by the NTFS file
system this could be used to decrease the amount of data transferred on
the network without increasing the server load or storage requirement. A
common way to implement support for compressed files in a web server is
otherwise to store the files both un-compressed and compressed with one
or more compression algorithms using different file name extensions, the
web server can then choose the version of a file to send depending on what
compression algorithms the client supports.

4.1.3 Handing over a request to user mode

Since the basic idea is to let a kernel mode web server handle some requests
while others is handed over to a user mode web server an important question
is how the hand over is done, this section describes different methods to do
this.

HTTP redirect: The HTTP protocol allows a web server to send a redi-
rect response to a request from a web browser, the browser then does a new
request from another location, the redirect response could be used for the
requests that should be handed over to the user mode web server, for exam-
ple by changing the port number. However this would double the number of
network connections needed and increase the load on the server. Because of
the low performance this method is not used in any existing project as far
as known but an advantage is that it is easy to implement and it could be
used in a prototype during experimentation.

Socket to socket copy: When the kernel mode web server finds that a
request should be handed over to the user mode web server it could simply
copy the data between the socket belonging to the remote client and a socket
belonging to the user mode web server, possible creating a new thread for
each connection or using non-blocking socket calls. This method was used
in the first versions of kHTTPd but to increase performance it was soon
replaced with the method described in the next paragraph. An advantage
of this method is that it is rather simple to implement, it could be used for
the prototype on Windows but one would need to investigate the affects on
performance.
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The Linux way: Newer versions of kHTTPd and TUX use a particular
efficient method to hand over a request to the user mode web server, they
directly enters it in the accept queue for the socket it is listening on, this can
be done since a kernel module in Linux has access to data structures and
functions internal to the operating system and the source code is available.
When reading the HTTP request the kernel mode web server uses the flag
MSG PEEK that returns the arrived data without removing it from the buffer
in the TCP/IP-stack, if the request is to be handed over to the user mode
web server the data is still there to be read again. After the request is moved
to the new socket is the original socket empty and the process waiting for a
connection on the new socket will be waken up as if the connection had been
done to that socket from the beginning. Of the methods described this one
has the highest performance since it avoids any extra copying of data and
is transparent to the system, however it can only be done if the source code
for the operating system is available like it is for Linux. It is not possible to
modify the Windows Sockets implementation to use this method.

Replacing the original Windows Sockets implementation: The met-
hod described in the last paragraph to hand over a request from the kernel
mode web server to the user mode web server is the most efficient one, the
reason it can not be used on Windows is that the source code to the Win-
dows Sockets implementation is not available, however it is still possible to
solve the problem based on this method by replacing the Windows Sockets
implementation with one that is aware of the relation between the kernel
mode web server and the user mode web server. This specialized Windows
Sockets implementation would hand over a request to the user mode web
server if it can not be processed by the kernel mode web server. The user
mode web server is like other network applications dynamically linked to a
DLL that implements the Windows Sockets API, as is described in one of the
following sections it is possible to replace this DLL for only the user mode
web server while other network applications will continue to use the ordinary
implementation. Advantages with this method is that it will probably be as
efficient on Windows as on Linux and that the user mode web server can be
unmodified, an disadvantage is that it is a lot of work to implement it.

A new protocol family with a Windows Sockets Helper DLL: Win-
dows Sockets version 2 is a general interface that can be extended to support
new protocols. A new protocol is implemented in two parts, one kernel mode
transport provider and one Windows Sockets Helper DLL. To use the new
protocol an application specify it as the parameter called “protocol family”
or “address family” to the socket() function. The common processing will
be done by the ordinary Windows Sockets implementation while it will call
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the Windows Sockets Helper DLL to perform functions that is specific to
the new protocol. The advantage of this design is that it makes it easy to
add a new protocol and that the applications can use it with the standard
Windows Sockets API. It would be possible to use this method to imple-
ment a way for the kernel mode web server and the user mode web server
to communicate, if one let the new protocol only adds this functionality to
the existing TCP/IP protocol this method might be somewhat easier than
the method described in the last paragraph, however one drawback is that
the user mode web server would need to be modified so that it requests the
new protocol when it creates its socket.

4.1.4 Replacing a system DLL

The user mode web server and other network applications use the Win-
dows Sockets interface for network communication, this section describes
how to let the user mode web server use a specialized Windows Sockets
implementation that communicates with the kernel mode web server. An
application that is using Windows Sockets is linked to a DLL that imple-
ments the Windows Sockets API, for Windows Sockets version 2 is the DLL
named WS2 32.DLL while Windows Sockets version 1.1 is implemented by a
DLL named WSOCK32.DLL that to the most part forwards the calls to the
corresponding function in WS2 32.DLL.

When an application that is linked to a DLL is loaded will the system
search for the corresponding DLL in certain places in order and loads the
first instance that is found. The search order is:

1. The directory from which the application is loaded.

2. The current directory.

3. The system directory. (typical c:\windows\system32\)

4. The 16-bit system directory. (typical c:\windows\system\)

5. The Windows directory. (typical c:\windows\)

6. The directories that are listed in the PATH environment variable.

This makes it possible to replace a system DLL for a specific application by
placing a new DLL with the same name in the applications directory. Then
that application will use the new DLL while other applications will continue
to use the old DLL in the system directory.

Note that on Windows XP and Windows Server 2003 is there a new registry
entry called HKLM\System\CurrentControlSet\Control\Session Manager\
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SafeDllSearchMode to change the search order, if set to “1” the current di-
rectory is searched after the system and Windows directories, but before
the directories in the PATH environment variable. On Windows XP SP1
and Windows Server 2003 is this registry entry set to 1 as default.

If this specialized Windows Sockets only re-implement some of the functions,
or only pre- or post-process them, it is convenient to be able to call the
original DLL, this can be done with help of the functions LoadLibrary()
and GetProcAddress(). An example shows how this can be done for the
function gethostname(), first is a function pointer and a variable to store
a pointer to the original function declared:

typedef int (__stdcall *pf_gethostname)(char *name, int namelen);
static pf_gethostname win_gethostname;

At the initialization of the DLL is a pointer to the original function requested
using the functions LoadLibrary() and GetProcAddress():

win_gethostname = (pf_gethostname)
GetProcAddress(LoadLibrary("c:\path\filename.dll"), "gethostname");

Then can a call to gethostname() easy be redirected to the same function
in the original DLL:

int __stdcall gethostname(char *name, int namelen)
{

return win_gethostname(name, namelen);
}

An important point to keep in mind when replacing a DLL is that an ap-
plication can not only link to functions by name but also by number, this
number is called “ordinal”. To let a function have the same ordinal in the
new DLL as in the one being replaced one must create a “Linker Definition
File”, a part of it defining the ordinal for the function gethostname() is
shown here:

EXPORTS
...
gethostname @57

4.1.5 Socket handles as file handles

The socket handles used by Windows Sockets is normal file system handles,
this means that an application can call file I/O functions like read() and
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write() with the socket handle and the I/O manager will redirect the call
to the driver that the corresponding file object belongs to. Since this is the
driver implementing the kernel mode part of Windows Sockets (AFD.SYS)
it can translate the read or write call to recv and send respectively.

Windows provides functions to help the implementer of a new protocol to re-
quest and manage this kind of handles, these functions are WPUCreateSocket
Handle(), WPUQuerySocketHandleContext() and WPUCloseSocketHandle().

It is also possible for a new protocol to implement this feature by acting as
a full file system driver, however that is a large and difficult implementation
to do.

4.2 Prototype

This section describes the components of the prototype.

4.2.1 Simple kernel mode sockets

A major part of the project was to implement the kernel mode sockets li-
brary. This was difficult for two reasons, first it is more difficult to develop
and debug drivers than applications, especially on Windows and second
the interface to network communication from kernel mode is in large part
undocumented. The TDI interface in itself is documented[13] but this doc-
umentation is directed to implementers of new network protocols, there is
almost no documentation for developers of TDI clients and most notably is
the existing protocols like TCP/IP undocumented. During the work I had
good help from postings on the Internet by Gary Nebbett and Maxim S.
Shatskih.

The TDI interface is a standard driver interface based on IRP’s. To use the
TDI interface one opens a named device object representing the protocol
off choice. The open operation will create a file handle and a file object is
requested with ObReferenceObjectByHandle(). This file object can then be
used in further calls to the TDI interface to identify the “socket”. To make
a call an IRP is created with TdiBuildInternalDeviceControlIrp() or
IoAllocateIrp() and initialized with the help of one of the TdiBuildXxx()
macros. The IRP is then sent to the transport driver using IoCallDriver()
and it is possible to either wait on an event for it to complete or specify an
completion routine that is called when the request completes.

The TDI interface uses two kinds of file objects; representing transport ad-
dresses respective connection endpoints, a transport address is always needed
while a connection endpoint is used for TCP sockets, a connection endpoint
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is associated with a transport address and a transport address can be asso-
ciated with more than one connection endpoint.

It is also possible to register different event handlers on a transport address,
when a network event occur is the corresponding event handler called, since
the event handlers is called at DPC level what they are allowed to do is
limited.

Following is comments on my experiences trying to implement a simple
socket library for kernel mode on Windows using the TDI interface. It is
not complete and focus on what is needed by the web server prototype but
it includes some functionality not used by the web server prototype like
connect() and UDP sockets.

Creating a socket:

int __cdecl socket(int af, int type, int protocol);

A socket is created with the function socket(), it takes parameters to spec-
ify the kind of socket, the only kind of interest for a web server is stream
sockets using the TCP protocol. The return value of the socket function is
a handle that is used as a parameter to the functions operating on a socket.

There is no need to call the TDI interface at the time of creating a socket,
instead this function just allocates an internal data structure to keep infor-
mation about the socket and returns a handle to it. To keep this implemen-
tation simple I decided to use minus the address of the internal struct as a
“handle” to the socket, using the address of the struct as a handle makes
it easily available and the reason for using minus the address is that since
a handle is 32-bit and addresses of memory allocated in kernel mode on
Windows is above 2GB, minus the address will be a positive number when
casted to a signed integer while negative numbers can be used as error codes.
Off cause this method should be replaced by using “real” handles, perhaps
using the RtlGenericTable functions or even using file system handles.

Binding the socket to a local address and port number:

int __cdecl bind(int socket, const struct sockaddr *addr,
int addrlen);

For a server the next step is usually to associate the socket with a local port
number and possible an address, this is called binding.

The bind() function will call the TDI interface to do two things, create
a transport address and possible set up one or more event handlers. The
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file handle and file object representing the transport address is saved in the
internal socket struct for later use. The only event handler needed to be set
in my implementation was for the disconnect event.

Making an connection:

int __cdecl connect(int socket, const struct sockaddr *addr,
int addrlen);

A web server does not need the connect() function but I implemented it
anyway for completeness and it is shortly described here. If the socket is
not bound will the connect() function begin by doing an implicit bind, this
means that the TCP/IP-stack will assign a free port number to it. Then
is something called a connection endpoint created, for information on what
this is see the listen() function. Finally is a TDI CONNECT IRP sent to the
TDI interface.

Listen for connections:

int __cdecl listen(int socket, int backlog);

The listen() function is used by a server to tell that a socket should
listen for connection attempts. A connection can then be accepted using
the accept() function.

To understand how listen() and accept() relate to the TDI interface and
implementing them was the most difficult part of the socket library.

The TCP/IP-stack will listen for connection attempts either if a TDI LISTEN
call is made or if a connect event handler is installed on the transport ad-
dress. The TDI LISTEN call will complete when a connection attempt is
made, if the flags are 0 is the connection already accepted at that time
so no TDI ACCEPT call is needed, if the flags are TDI QUERY ACCEPT one
can either make a TDI ACCEPT call to accept the connection attempt or
a TDI DISCONNECT call to deny it. The connect event handler builds an IRP
that will be sent to the TDI interface, it can either be a TDI ACCEPT IRP to
accept the connection attempt or a TDI DISCONNECT IRP to deny it.

In my simple implementation I did not use an connect event handler but
instead let the listen() function only create the connection endpoint, the
major part of the work is then done by the accept() function. This means
an deviation from the BSD socket standard since the socket wont be listening
until accept() is called but this wont affect the prototype developed in this
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project. Another disadvantage with this method is that it corresponds to a
fixed backlog of only 1.

In a more elaborate implementation one would instead let listen() create
a number of connection endpoints and install an connect event handler on
the transport address.

Accepting an connection:

int __cdecl accept(int socket, struct sockaddr *addr, int
*addrlen);

The accept() function accepts an connection and returns a new socket
that represents it while the old socket can be used again to accept more
connections.

In my implementation does accept() start by issuing TDI LISTEN with flags
set to 0, this means to wait for a connection attempt and accepting it. When
the TDI interface is used in this way is TDI ACCEPT never needed. After the
TDI LISTEN call completes does my implementation create and initiate a
new socket, the connection endpoint is associated with this socket since it
is now connected to the remote node. Finally is a new connection endpoint
created and associated with the old socket so it can be used to accept more
connections.

In the more elaborate implementation suggested in listen() above the
accept() function would instead wait for an event to be signalled by the
connect event handler that does the most part of the work. The connect
event handler would do two things, build an TDI ACCEPT IRP to accept the
connection attempt and create a new connection endpoint to replace the
one being used so that the backlog still has the same size. The event that
the accept() function is waiting on could be signalled by the completion
function for the TDI ACCEPT IRP. Note that since the connect event handler
runs at DPC level it can not create a new connection endpoint from within
it but must instead schedule a work-item to do that.

However I stayed with the simpler implementation in this project.

Sending data:

int __cdecl send(int socket, const char *buf, int len, int
flags);
int __cdecl sendto(int socket, const char *buf, int len, int
flags, const struct sockaddr *addr, int addrlen);
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The functions to send data can be a bit tricky to implement, for example the
TCP protocol provides a reliable byte stream and might need to re-transmit
a packet if it is lost on the network, there fore doesn’t the TDI SEND request
completes as soon as the data has been scheduled to be sent, in the case
a re-transmit is needed must the buffer remain available to the TCP/IP-
stack, instead it will complete after an acknowledge has been received for
all packets that were used to send the data in the buffer. However letting
send() block until then would mean an inefficiency if the user does several
small sends after one another, therefore a natural implementation is to let
send() copy the data to an internal buffer and sending it from there instead
so that send() can return immediately, only when the internal buffer is full
would send() block. Since the web server prototype doesn’t use send() at
all but instead a new function specialized to send file data I didn’t implement
this buffering in the normal send() but left it as it is. When sending UDP
data this shouldn’t be an issue since UDP doesn’t use re-transmit.

To send file data as efficiently as possible an MDL representing it in the file
system cache is requested and the header and the first data is put together
to a chained MDL. To send this I created a send function that takes an
MDL instead of buffer and length parameters. The MDL is given to the
TDI interface to be sent where after the function returns. A completion
routine specified by the caller is run when the call completes to de-allocate
the buffer and MDL.

A question that is raised since the send call is non-blocking is how many
TDI SEND requests to have outstanding, the documentation says that a send
request may return STATUS DEVICE NOT READY and that there is an event
handler “send possible” to be called when the TDI interface is ready to send
again. However for the file sizes used during performance measurements on
the web server I didn’t had any problems with the send implementation so
I left this question unanswered.

Receiving data:

int __cdecl recv(int socket, char *buf, int len, int flags);
int __cdecl recvfrom(int socket, char *buf, int len, int flags,
struct sockaddr *addr, int *addrlen);

The functions to receive data was more straight forward to implement than
for sending, in my implementation I just create an MDL for the users buffer,
make a call to the TDI interface and wait for it to complete. I didn’t find
the need to implement MDL versions of the receive functions for the web
server prototype but that could be done to make the socket library more
complete.
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The TDI interface allows registering an event handler that is called when
data is received, doing that wasn’t needed in this project but in the con-
clusions section I suggest that performance could be improved by analyzing
and responding to a HTTP request from an receive event handler, however
if sending file data from an event handler it must be cached in non-paged
memory.

Getting and setting socket options:

int __cdecl getsockopt(int socket, int level, int optname, char
*optval, int *optlen);
int __cdecl setsockopt(int socket, int level, int optname, const
char *optval, int optlen);

The functions getsockopt() and setsockopt() is used to get and set op-
tions on a socket, the prototype didn’t need the use of any particular socket
option so I left them unimplemented.

Query the local or remote address and port number:

int __cdecl getsockname(int socket, struct sockaddr *addr, int
*addrlen);
int __cdecl getpeername(int socket, struct sockaddr *addr, int
*addrlen);

The function getsockname() returns the address and port number of the
local socket if it is bound. This information can be requested from the TDI
interface using the minor function code TDI QUERY INFORMATION and the
query type TDI QUERY ADDRESS INFO. When first trying this call I noticed
that the address returned was always “0.0.0.0” while the port number was
correct. The documentation says:

TDI QUERY ADDRESS INFO specifies that the transport should re-
turn the information, formatted as a TDI ADDRESS INFO struc-
ture, in the client-supplied buffer mapped at MdlAddr. FileObj
must point to an open file object representing a transport address
or a connection endpoint already associated with a transport ad-
dress.

Note that it doesn’t say if it matters if a file object representing a trans-
port address or a connection endpoint is used. After experiencing that the
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address returned was always 0.0.0.0 I tried using the file object represent-
ing a connection endpoint instead of the transport address and indeed the
address was correctly returned! This led to the following implementation of
the function getsockname() for TCP sockets:

else if (s->type == SOCK_STREAM)
{

*addrlen = sizeof(struct sockaddr_in);

return tdi_query_address(
s->streamSocket && s->streamSocket->connectionFileObject ?
s->streamSocket->connectionFileObject : s->addressFileObject,
&localAddr->sin_addr.s_addr,
&localAddr->sin_port
);

}

Note that if the user calls getsockname() after bind() but before connect()
or listen() the socket has a port number but no connection endpoint,
therefore one must query the transport address in this case.

The function getpeername() returns the address and port number of the
remote node, this is always known and does not require a call to the TDI
interface, it is saved in the private socket struct either when connecting to
a given address or when accepting an connection attempt at witch time it
is provided by the TDI LISTEN call or the connect event handler.

Functions to convert between host and network byte order:

u_long __cdecl htonl(u_long hostlong);
u_short __cdecl htons(u_short hostshort);
u_long __cdecl ntohl(u_long netlong);
u_short __cdecl ntohs(u_short netshort);

Computers use either big endian or little endian byte order while Internet
addresses and port numbers always is transferred in big endian byte order.
The functions htonl() and htons() is used to convert between the hosts
byte order and network byte order for long and short integers respectively,
the functions ntohl() and ntohs() is used to transfer between network byte
order and the hosts byte order but off cause they do the same thing as the
former functions. For a big endian system this functions do nothing but since
the x86 CPU is using little endian byte order they should be implemented
to swap the bytes, this can be done as a pre-processor macro, anyway the
TDI interface is not involved.
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Functions to convert between ASCII and integer representation
of addresses:

u_long __cdecl inet_addr(const char *name);
int __cdecl inet_aton(const char *name, struct in_addr *addr);
char * __cdecl inet_ntoa(struct in_addr addr);

These functions is used to convert between ASCII and integer representa-
tion of addresses, like the byte order functions they are straight forward
to implement and does not require the use of the TDI interface, however
one issue to mention is that inet ntoa() returns a pointer to an string, if
this is a statically allocated string witch is common in user mode will the
implementation not be thread safe, on the other hand if it is dynamically
allocated like I choose to do it must be de-allocated by the caller after use
witch is an incompatibility from the BSD socket standard.

Shutting down a socket:

int __cdecl shutdown(int socket, int how);

I implemented the function shutdown() to call TDI DISCONNECT with the
flags set to TDI DISCONNECT RELEASE, for more information on this request
see close().

Closing a socket:

int __cdecl close(int socket);

It is almost optional to use event handlers but in fact for TCP sockets there
is one event handler that must be used and that is the disconnect event. To
properly close a TCP connection and be sure that all data sent is transferred
to the remote node one must begin by calling TDI DISCONNECT with the flags
set to TDI DISCONNECT RELEASE, however waiting for this IRP to complete
and then closing the file objects representing the transport address and the
connection endpoint might close them prematurely and data is lost, instead
one must wait for the disconnect event to be called witch it is after the TCP
protocol has negotiated the closing of the connection.

Note that the flag TDI DISCONNECT RELEASE does a “graceful close” but it
also exists a flag TDI DISCONNECT ABORT to do a “hard close” of the socket, in
this case will the disconnect event handler not be called. However when doing
a graceful close but the remote node does a hard close will the disconnect
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event handler be called, the flags parameter to the disconnect event handler
tells what kind of close the remote node did.

In my implementation I choose to install the disconnect event handler when
creating the transport address in bind() and send TDI DISCONNECT from ei-
ther shutdown() or close() and then finally wait for an event to be signalled
from the disconnect event handler. After this wait is the file objects repre-
senting the transport address and the connection endpoint de-referenced and
their handles closed. The TDI DISCONNECT ABORT flag was not needed.

DNS lookup functions:

struct hostent * __cdecl gethostbyaddr(const char *addr, int
addrlen, int type);
struct hostent * __cdecl gethostbyname(const char *name);
int __cdecl gethostname(char *name, int namelen);
struct protoent * __cdecl getprotobyname(const char *name);
struct protoent * __cdecl getprotobynumber(int number);
struct servent * __cdecl getservbyname(const char *name, const
char *proto);
struct servent * __cdecl getservbyport(int port, const char
*proto);

This collection of functions is used to query the DNS, for example to get the
Internet address of a named host. Since this is not needed by the web server
prototype all of these functions is un-implemented however I will comment
on how to implement them.

A straight forward method is to just implement the functions using the
socket library, the DNS query protocol is simple and there should be no
problems implementing it for kernel mode on Windows. Another possibility
is to implement them with the help of a user mode service process that
the kernel mode part communicates with. The user mode process can then
forward the call to the ordinary Windows Sockets API and finally return
the result to the kernel mode sockets library. An advantage of this method
is that if the ordinary Windows implementation is changed or re-configured
will the kernel mode sockets library automatically make use of this.

The kernel mode socket implementation compiles to a static library that a
driver can link to.
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4.2.2 pthreads

“pthreads” or the “POSIX Threads API” is a standard that defines how to
create multiple threads in a process and how to synchronize and communi-
cate between them. To support developing the prototype I implemented a
simple pthread library for Windows drivers limited to the functions used by
the prototype. It had off cause been possible to let the prototype use the
Windows API directly but an advantage with this method is that it makes
it easy to borrow code between Windows and UNIX and user mode and ker-
nel mode while developing the prototype and experimenting with different
solutions.

Only the functions to create a thread, terminate a thread and wait for a
thread to terminate was needed. Following is comments on their implemen-
tation.

Create a thread:

int __cdecl pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine)(void*), void *arg);

The function pthread create() creates a new thread using PsCreateSystem
Thread() and optionally saves a handle to it if the parameter pthread t
*thread is non-NULL. If a handle to the thread is saved it must be waited
on with the function pthread join() or closed with ZwClose().

Terminate a thread:

void __cdecl pthread_exit(void *value_ptr);

The function pthread exit() terminates the current thread by calling
PsTerminateSystemThread(). It is also possible for a thread to terminate
by simply returning from its main function.

Wait for a thread to terminate:

int __cdecl pthread_join(pthread_t thread, void **value_ptr);

The function pthread join() waits for a given thread to terminate us-
ing ZwWaitForSingleObject(), if the threads exit status is requested it is
queried using ZwQueryInformationThread(). If one has saved an handle to
a thread it must be waited on with this function or closed with ZwClose().
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The pthread implementation compiles to a static library that a driver can
link to.

4.2.3 Kernel mode web server

The kernel mode web server developed is a prototype intended to be used
for performance measurements and evaluation of different methods therefore
it only implements the HTTP GET request. It uses the socket and pthread
library described above. Following is a description of its implementation.

Web server: The main part of the web server is simple, the DriverEntry()
function creates a socket and a thread that waits for connections to it. For
every connection is separate thread created to handle the request, the thread
will read the HTTP request and if it is a HTTP GET request and the re-
quested file exists will it be sent using send file mdl(). Other HTTP re-
quests is not supported, there is also limited support for the different HTTP
headers that can help web browsers and proxy servers to be more efficient.

File-I/O: The most interesting part of the web server prototype is the
file-I/O functions since they use the MDL interface to utilize zero-copy net-
working.

HANDLE dopen(PUNICODE_STRING dirName);

The function dopen() uses ZwCreateFile() to open a handle to a directory.

HANDLE fopen(char *fileName, HANDLE rootDir);

The function fopen() uses ZwCreateFile() to open a handle to a file. A
nice feature of ZwCreateFile() that is used here is the possibility to do a
so called “relative open”, this means that a file handle to an already opened
directory is given, the path and file name is then interpreted to be relative
to this directory. This is used by the web server to open the requested file
relative to the directory that has been specified as the document root.

Another thing worth to mention here is that I specify the flag FILE SEQUENTIAL
ONLY to inform the cache manager that the file will be read sequentially, from
the beginning to the end, the cache manager can then use this information
to optimize the caching of the file.

int fread(HANDLE fileHandle, void *buf, int len);
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The function fread() reads file data with ZwReadFile() to a buffer, it is
included here only for demonstration and comparison since the web server
instead should use fread mdl().

int fread_mdl(PFILE_OBJECT fileObject, PLARGE_INTEGER offset,
ULONG len, PMDL *mdl);

The fread mdl() function uses the special MDL interface to the file system
to request an MDL representing the data in the file system cache. It allocates
at initializes a normal read IRP but sets the MinorFunction to IRP MN MDL
and leave the Irp->MdlAddress un-initialized. When the call completes has
the file system driver set Irp->MdlAddress to an MDL that is returned to
the caller.

int fread_mdl_complete(PFILE_OBJECT fileObject, PMDL mdl);

The function fread mdl complete() is used to return (de-allocate) an MDL
requested with fread mdl(), it sets the MinorFunction to IRP MN COMPLETE
MDL and Irp->MdlAddress to the MDL that should be returned to the file
system.

void fclose(HANDLE fileHandle);

The function fclose() uses ZwClose() to close the file handle.

int send_file(int sock, char *header, HANDLE fileHandle);

The function send file() uses fread() and send() to send a header fol-
lowed by file data to a socket. It is only included for demonstration and
comparison with send file mdl().

int send_file_mdl(int sock, char *header, HANDLE fileHandle);

The function send file mdl() uses fread mdl() to request an MDL repre-
senting the file data, for the first block it links the file data MDL to an MDL
for the header. Then the MDL is sent and an completion routine specified to
de-allocate it with fread mdl complete(). This is repeated in a loop until
all of the file data has been sent.

static void send_mdl_complete(int status, void *context);
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The function send mdl complete() is run at DPC level when the send re-
quest has completed and the TDI interface doesn’t need the buffer any more,
it queues a work item to do the de-allocation since that is not allowed at
DPC level.

static void work_item(void *context);

The function work item() is finally run and uses fread mdl complete() to
return the MDL to the file system and de-allocates other resources used.

5 Performance measurements

This section describes how to measure performance of web servers and the
results from measuring the prototype and other web servers for Windows
and Linux.

5.1 Method

5.1.1 What to measure

The most common parameters to measure is latency (time to complete a
request) and throughput (bytes/second), it is also common to study the
web servers performance for different file sizes, for small files is the most
time spent on setting up the TCP connection and process the request so the
number of requests per second gives good information on the performance,
for bigger files is the performance more affected on the work of reading file
data from the file system and sending it to the TCP/IP-stack so throughput
will better show the difference between web serves here.

When the Standard Performance Evaluation Corporation (SPEC) developed
their SpecWeb benchmark they analyzed log files from different web servers
to determine the file size distribution of the requests handled by a typical
web server. The result is listed in table 5 and shows that rather small files
is most common.

Files less than 1KB 35%
Files between 1KB and 10KB 50%
Files between 10KB and 100KB 14%
Files between 100KB and 1000KB 1%

Table 5: File size distribution of requests to a typical web server
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Another thing to measure is how the web server handles a large number of
simultaneous connections, this will show if the connections is handled in an
efficient way or if more and more processing time goes to just administrating
the connections. One should not forget that even idle connections could
impose a load on the server.

Related to this is testing the web servers overload behaviour, this means
to connect a larger number of clients making more requests than the web
server can handle. Depending on the design of the web server can two things
happen, ideally will many of the clients be processed rather fast while others
get connection timeout or connection refused, this means that the server will
make progress and that the load will eventually decrease again. On the other
hand it could also happen that the new requests fill up the servers resources
and make the processing slower and slower for all clients until the server
appears to have locked up, this condition is called “receive livelock”[14].

5.1.2 Benchmarks

This section describes the most common benchmarks for web servers.

httperf: The httperf benchmark[15] is developed by David Mosberger at
Hewlett-Packard Research Labs. The httperf benchmark is a flexible HTTP
client that requests a file from a web server a number of times and possible
from a number of parallel threads and then prints out detailed statistics.
The most important statistics is the number of requests per second and
the network throughput but httperf also gives timing information with min
and max limits and information on the errors if any. An example of the
output from httperf is shown below. Httperf does not use any particular file
set, it is left to the tester to choose them. A strength of httperf is that it
can measure how the web server can handle a load with a large number of
concurrent connections and records any timeouts or other errors that occur.
The httperf benchmark is available for free in source code form and can be
compiled for most versions of UNIX.

$ httperf --timeout=60 --server=192.168.1.1 --port=80 --uri=/www/64.jpg
--num-conns=1000
Maximum connect burst length: 1

Total: connections 1000 requests 1000 replies 1000 test-duration 0.527 s

Connection rate: 1897.3 conn/s (0.5 ms/conn, <=1 concurrent connections)
Connection time [ms]: min 0.5 avg 0.5 max 46.2 median 0.5 stddev 1.4
Connection time [ms]: connect 0.1
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Connection length [replies/conn]: 1.000

Request rate: 1897.3 req/s (0.5 ms/req)
Request size [B]: 72.0

Reply rate [replies/s]: min 0.0 avg 0.0 max 0.0 stddev 0.0 (0 samples)
Reply time [ms]: response 0.3 transfer 0.0
Reply size [B]: header 45.0 content 64.0 footer 0.0 (total 109.0)
Reply status: 1xx=0 2xx=1000 3xx=0 4xx=0 5xx=0

CPU time [s]: user 0.18 system 0.34 (user 34.2% system 64.5% total 98.7%)
Net I/O: 335.4 KB/s (2.7*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0
$

WebStone: The WebStone benchmark[16] was originally developed by
Silicon Graphics and later acquired by Mindcraft. The WebStone bench-
mark measures throughput and latency for a number of files with different
sizes. A standard file set is included with WebStone but it is also possible to
use a custom set, if using the standard file set can the result be compared
with others, MindCraft collects and publish such results on there web site.
WebStone is divided in two parts, a “Webmaster” runs a control program
that distribute a benchmark program to a number of “Web clients” using
rexec. After the benchmark is run will the Webmaster combine the perfor-
mance results from all the Web clients into a single summary report. The
WebStone benchmark is available for both Windows and different versions
of UNIX, it is free and the source code is included.

SpecWeb: The SpecWeb benchmark[17] is developed by the Standard
Performance Evaluation Corporation (SPEC), it is a non-profit corporation
that makes a number of benchmarks for different things. SPEC also review
and publish submitted results of its benchmarks for comparison on their web
site. The SpecWeb benchmark is named after the year it is made, two ver-
sions is in use, SpecWeb96 and SpecWeb99, while SpecWeb2005 is currently
under development. The evolution of SpecWeb mostly concerns generat-
ing new kind of workloads and support of dynamic content. The SpecWeb
benchmark is an integrated test that produces a load that is supposed to
closely model real-world applications, the result of the SpecWeb benchmark
is a single number. The SpecWeb benchmark is available for both Windows
and different versions of UNIX, it is not free but source code is included if
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one buys a license. The retail version of SpecWeb99 cost $800 and a license
for non-profit or educational use cost $200.

5.1.3 Things to consider

This section discusses things to consider when measuring web server perfor-
mance.

The network speed: To get a valid measurement result it is important to
avoid that the network speed is a bottleneck but that instead it is the server’s
hardware and software that sets the limit. It is mostly when measuring
throughput on larger files that this may become an issue, if the network
speed is to low the graphs for the different web servers will come closer
to each other and approach the theoretical maximum. My measurements
showed that even if the pattern was the same the spread among the web
servers was bigger on 100Mb/s Ethernet than on 10Mb/s Ethernet.

The presence of an anti-virus program: At the first measurements I
received rather low performance on Windows compared to Linux, therefore
I investigated the system to see if there was any difference in the setup that
could cause problems on Windows. Among other things I checked that the
network card was fully supported by the device drivers on both Linux and
Windows and that it was run in the same mode; duplex, DMA and calcula-
tion of TCP checksums in hardware. After some investigation I noticed that
Norton Antivirus was installed and running on the Windows system, dis-
abling it increased the performance with 20% to 25%, a significant change.
The reason for this is that Norton like other antivirus programs installs a
file system filter driver that hooks into the file system operations, when a
read request is done by an application the file system filter will scan the
file data for viruses before returning the data to the application, this will
introduce an performance degradation. However there have existed antivirus
programs that instead scanned the file content on every open request, they
reduced the performance a lot more! To do a fair comparison between Linux
and Windows it is important to check for these kinds of differences.

The maximum number of open file descriptors: To benchmark the
web servers I used httperf and run it on Linux. A limitation that I noticed
during testing with a large numbers of simultaneous connections was the
number of open file descriptors allowed, a socket handle is a file descriptor.
The maximum number of open file descriptors has changed during the ver-
sions of the Linux kernel, on the system I used it was 8192, the following
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command shows how to tell the limit:

$ cat /proc/sys/fs/file-max
8192

The following command run as root increases the limit to 65535:

# echo "65535" > /proc/sys/fs/file-max

Unfortunately the maximum number of open file descriptors is also compiled
into programs using the select() system call like httperf with a limit of
only 1024. To correct this one must edit the line

#define __FD_SETSIZE 1024

in the files /usr/include/bits/types.h and /usr/include/linux/posix types.h
to the new value and recompile the program.

Depending on the system configuration it might also be needed to increase
the per user limit of open file descriptors, for sh this is done with the com-
mand:

# ulimit -n number

and for csh with the command:

# limit descriptors number

A related problem is that if a program doesn’t specify an local address and
port number when calling bind() is the port number allocated from a limited
range, by default the range is 1024 to 4999, allowing 3975 simultaneous
outgoing connections. This range can be viewed with the command:

$ cat /proc/sys/net/ipv4/ip_local_port_range
1024 4999

The following command run as root increases the range up to 65535:

# echo "1024 65535" > /proc/sys/net/ipv4/ip_local_port_range
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The TIME WAIT state: When a TCP connection is closed does the
protocol go into a state called “TIME WAIT” that lasts for 60 seconds or
twice the maximum segment lifetime. One of the reasons for this is to avoid
that duplicate packets who has not arrived yet will be mistaken for valid data
on a new connection using the same port. However since the port number
is a 16-bit integer there can only be at most 65536 connections at the same
time and a port will be unavailable for a minute after closing the connection.
This may become a bottleneck both on the client side where the benchmark
program is run and on the server side when measuring a high connection
rate for a long time, one workaround is to only make short measurements
for small files that will give the highest connection rate, it is also possible
to avoid or shorten the TIME WAIT state but that means introducing an
incompatibility with the TCP/IP-protocol.

The maximum listen backlog: The function listen() takes a param-
eter called “backlog” that specifies how many connections can be pending
waiting for accept(). This is the number of connections that may arrive
while the server processes an accepted request, possible by creating a new
thread to handle the client, before it calls accept() again. If more clients
than the backlog number try to connect during this time they will get con-
nection refused. The web server can specify a backlog number when it calls
listen() but the operating system usually has some limit and will not
use a backlog number above this. The maximum listen backlog for different
environments is listed in table 6 .

Windows Sockets on client versions of Windows 5
Windows Sockets on server versions of Windows 200
TDI in kernel mode on Windows Decided by

programmer
Linux 128

Table 6: Maximum listen backlog

5.1.4 Measurement setup

The measurements were done in a lab at the department, the computers
are equipped with AMD Athlon 1133MHz CPU and 128MB RAM. They
are configured for dual boot and can either run Windows 2000 Professional
or Gentoo Linux[18]. When doing the measurements the computers where
connected to a separate Ethernet switch. As benchmark program httperf
where used because of its flexibility, it was run on Linux while the server
computer either ran Linux or Windows depending on witch web server to
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measure.

5.2 Results

This section shows diagrams with the results from the measurements, the
comments are in the next section. Measurement on 10Mb/s Ethernet:

Number of requests per second

Throughput in kB per second
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Measurement on 10Mb/s Ethernet, comparison:

Number of requests per second

Throughput in kB per second
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Measurement on 100Mb/s Ethernet:

Number of requests per second

Throughput in kB per second
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Measurement on 100Mb/s Ethernet, comparison:

Number of requests per second

Throughput in kB per second
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Measurement on 1000Mb/s Ethernet:

Number of requests per second

Throughput in kB per second
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Measurement on 1000Mb/s Ethernet, comparison:

Number of requests per second

Throughput in kB per second
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The effect of an anti-virus filter:

Number of requests per second

Throughput in kB per second
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The effect of an anti-virus filter, comparison:

Number of requests per second

Throughput in kB per second
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6 Conclusion

This section describes the conclusions drawn from the project and suggests
future work.

6.1 Difficulties

The main difficulty with the project was to implement kernel mode code
for Windows. Developing device drivers is more challenging than writing
user mode code both on Windows and on Linux, among other reasons is
there less support from the debugging tools and a small error in a driver
can make the whole operating system unstable or crash. Such errors are
often difficult to debug. Another difficulty is that on Windows is the kernel
mode interface to network communication in large part undocumented. The
TDI interface in itself is documented but this documentation is directed to
implementers of new network protocols, there is almost no documentation
for developers of TDI clients and most notably is the existing protocols like
TCP/IP undocumented. Because of this a major part of the project was
developing the kernel mode sockets library.

6.2 Performance

The measurements showed that kernel mode web servers has a substantial
performance gain over user mode web servers both on Linux and on Win-
dows.

The factor that is improved most in kernel mode is the latency witch means
that a larger number of requests per second can be processed, this is most
visible for small files where the kernel mode web servers on Linux is 50% to
75% faster than user mode web servers while the prototype on Windows was
as much as 200% to 300% faster than user mode web servers on the same
platform, for bigger files decreases the difference to only 0% to 25%. The
reason for the big improvement in latency is probably that a kernel mode
web server avoids unnecessary process scheduling.

The throughput is also improved by the kernel mode web servers but the
difference decreases as bigger the files is. For small and medium sized files
has the kernel mode web servers on Linux 25% to 50% higher throughput
and the prototype on Windows 100% to 200% higher throughput compared
to user mode web servers on the same platform, for bigger files decreases
the difference to 0% to 25%. The main reason for the higher throughput
from the kernel mode web servers is probably that they avoid unnecessary
copying of data in addition to the fact that lower latency also helps getting
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higher throughput.

When comparing absolute performance between the two platforms one makes
the observation that user mode web servers is faster on Linux than on Win-
dows, all kernel mode web servers is faster than the user mode web servers
and the kernel mode web servers on Linux is slightly faster than the proto-
type kernel mode web server developed for Windows.

I also tried to do measurements on 1000Mb/s Ethernet but the Linux driver
for the network card was a beta version and produced unpredictable results,
however the diagrams is included and the measurements on Windows is valid
and show the same pattern that the measurements on 10Mb/s Ethernet and
100Mb/s Ethernet.

Also for informational purposes I included the results that showed that an
anti-virus filter may decrease the performance as much as 25% for small files
while the effect is smaller for bigger files. Even though the anti-virus filter
scans a file for viruses on read it mainly affects the latency, the reason for
this is probably that the scan is scheduled to a system thread while the scan
itself is a fast operation.

The conclusion of the measurements is that kernel mode web servers should
be worth considering from a performance viewpoint, that the performance
gain from a kernel mode web server is bigger on Windows than on Linux
when compared to user mode web servers on the same platform and that
the prototype performs well compared to the kernel mode web servers on
Linux but that there is room for further optimizations.

6.3 Stability

By tradition as much software as possible is placed in user mode while kernel
mode is only chosen when direct access to hardware is needed or performance
motivates it, for example by device drivers. The most important reason for
this is stability, programs that execute in user mode is protected from each
other, every process has its own virtual memory context, this means that
an error in one process, like using an invalid pointer to write to the wrong
memory location, can not affect other processes instead will the process in
question be terminated. Software that execute in kernel mode on the other
hand has full access to the operating systems internal data structures and
the hardware, an error in this code usually brings down the whole system or
creates data corruption. Therefore it has been debated if a web server really
belongs in kernel mode even if it means some performance gain, however
there is a trend to move more and more software to kernel mode, for example
does both Windows and Linux runs its network file system servers in kernel
mode. A web server can be compared to a simple file server, relative other
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file servers is it small and not very complex so the arguments to not run a
web server in kernel mode is weak considering today’s trends.

6.4 Usability

Another thing to consider when deciding if a kernel mode web server is worth
the performance gain is usability. A web server needs a certain amount of
administration, for example it need to be configured, also it will produce log
files that should be studied and archived. Adding a kernel mode web server
that handles some requests and hands over others to the user mode web
server increases the administrative work since there are two web servers to
take care of. However it would be possible to integrate the two web servers
in one product, in some specific cases it is even possible that it is enough
with a kernel mode web server.

6.5 Future work

The future work can be divided in creating a product based on this project
or doing more research.

If creating a real product the main thing to do is to fully implement the
kernel mode web server, the prototype made in this project only handles
the HTTP GET request, a product would need to handle the other HTTP
requests as well as the different headers that helps web browsers and proxy
servers to be more efficient. A product would also need to support log files
and have some interface for configuration. There could also be a need to
improve the kernel mode sockets implementation to be more optimized and
better support the need of a web server.

If instead doing more research an obvious thing to do is to further optimize
the interface to the file system and the TCP/IP-stack, for example using the
fast-I/O functions when reading from the file system and making the inter-
face to the TCP/IP-stack more event driven could improve performance.

Another thing that would be interesting to investigate is caching of file data
so that it could be served directly from the TDI event callback that notifies
about the arrival of a request from the client. The TDI event callbacks runs
at DPC level, something that can be compared to bottom-half interrupt
handlers in Linux, on DPC level is page faults not allowed and it is not
possible to make lookups in the file system, to be able to answer a request
here one would need to cache files in non-paged memory. An idea is to not
implement a full private cache for the kernel mode web server but instead
use the file system cache even in this situation, an MDL representing data
in the file system cache that has been requested using the IRP MN MDL minor
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function can be used at DPC level if the memory has been made non-paged
with a call to MmProbeAndLockPages(). Therefore does the private cache
only have to maintain a table of file names and MDLs for the file data that
has been read and locked before hand. If the requested file is in the table
can the file data be sent directly from the receive event handler, if the file is
not yet cached can the receive event handler schedule a work item to cache
the file using an LRU algorithm and send it, the file is then available in
the cache for further requests. It should be noted that the call TDI SEND is
allowed at DPC level.

6.6 Commercialisations

A natural commercialisation of this project is to create a product containing
a kernel mode web server that can be used together with any user mode
web server to increase its performance. However selling software is always
difficult and there is competition from free or open source products. It is also
possible that a manufacturer of a user mode web server uses this method to
implement an integrated product that contains both a kernel mode and a
user mode web server that has a common interface for administration.

A different way to commercialise this project is instead to focus on the
implementation of the kernel mode sockets library, this could be further
developed to a general product that can be used to implement high perfor-
mance network servers or distributed file systems, an idea is to publish the
kernel mode web server for free as an example of a product using the library,
if it receives high results in benchmarks it could help marketing the library.

6.7 Comments

Finally I would like to say that this project was very interesting to work with,
I have learned a lot about the TCP/IP protocol and its implementation on
both Windows and Linux. It was also interesting to do the benchmarks of
different web servers and see how the hardware and the operating system
support affects there performance. I think that the project has succeeded in
implementing and evaluating a High performance kernel mode web server for
Windows and that it has created knowledge about network communication
from kernel mode in Windows that has general use in further work.
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A Abbreviations

APC Asynchronous Procedure Call.

API Application Programming Interface.

BSD Berkeley Software Distribution.

CGI Common Gateway Interface.

DDK Driver Development Kit.

DLL Dynamic Link Library.

DMA Direct Memory Access.

DPC Deferred Procedure Call.

EA Extended Attribute.

FSD File System Driver.

FTP File Transfer Protocol.

GUID Globally Unique IDentifier.

HAL Hardware Abstraction Layer.

HTTP HyperText Transfer Protocol.

IFS Installable File System.

IIS Internet Information Server.

IOCTL I/O ConTroL code.

IP Internet Protocol.

IrDA Infrared Data Association.

IRP I/O Request Packet.

IRQL Interrupt ReQuest Level.

MDL Memory Descriptor List.

MIME Multipurpose Internet Mail Extensions.

NDIS Network Driver Interface Specification.

NIC Network Interface Card.
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SAN System Area Network.

SDK Software Development Kit.

SEH Structured Exception Handling.

SMB Server Message Block.

TCP Transmission Control Protocol.

TDI Transport Driver Interface.

URL Uniform Resource Locator.

WSA Windows Sockets API.

WSH Windows Sockets Helper.

WSP Windows sockets Service Provider.

WSU Windows Sockets Upcall.
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